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Abstract:

This paper presents an integrated approach to improving prosthetic bionic hand control
for children, focusing on the challenges of interpreting electromyography (EMG) signals
obtained from the MyoWare sensor. By addressing both the biological intricacies of forearm
muscle and nerve activities and the application of machine learning techniques for signal
interpretation, we aim to develop a more responsive and intuitive prosthetic hand that
closely mimics natural hand movements.

Note that this paper is the independent work of the author, developed for my personal
understanding and to systematically compile research on enhancing prosthetic bionic hand
control. It remains a work in progress, with updates planned as new findings emerge. The
project is expected to be completed possibly by the end of the semester ( April 2024),
reflecting ongoing advancements.
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CHAPTER I

INTRODUCTION

1.1 Outline

The context for the Bionic Hand project is set against the backdrop of an urgent global

need for affordable prosthetic technologies, especially for children in economically disadvan-

taged regions. High costs and technical limitations significantly restrict the functionality

and accessibility of prosthetic hands. The motivation stems from a desire to bridge this

gap by leveraging innovative solutions and advanced software algorithms, making efficient,

cost-effective prosthetic hands a reality for children worldwide, fostering inclusivity and com-

munity support.

1.2 Background

In our venture, my team and I are revolutionizing prosthetic technology for children by creat-

ing an affordable, high-functioning bionic hand for under $70. This initiative not only makes

advanced prosthetics accessible to families globally, such as in regions like Mexico and Saudi

Arabia, but also sets a new benchmark in compassionate engineering. Our multidisciplinary

team uses the latest in software and hardware integration, employing innovative design prin-

ciples such as Dielectric Elastomer Actuators (DEAs). These actuators, utilizing a thin

polymer film coated with compliant electrodes, exemplify revolutionary advancements in ar-

tificial muscle technology. By applying a voltage difference, we induce electrostatic pressure,

enabling precise movement and mimicking the natural motion of human hands. Our fabri-

cation process, made for efficiency, incorporates monolithic and folded actuator designs to
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enhance performance while simplifying production. This project embodies our commitment

to giving back, inspiring change, and fostering inclusivity in technological development.

1.2.1 Objectives

Address the significant challenge of signal noise in prosthetic bionic hands, thereby enhanc-

ing the efficiency and functionality of the device. By innovating a cost-effective solution

that reduces production expenses, we aim to make advanced prosthetic technology acces-

sible worldwide. This endeavor not only seeks to refine electromyography (EMG) signal

interpretation through advanced software algorithms and machine learning integration but

also to inspire a broader impact on community aid and technological inclusivity in prosthetic

development.
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CHAPTER II

BIOLOGICAL INSIGHTS

The control of a prosthetic hand through signals detected in the forearm involves understand-

ing the biological processes behind muscle activation and the generation of electromyographic

(EMG) signals.

2.1 Section

The forearm contains a complex arrangement of muscles and nerves. When a person decides

to open or close their hand, the brain sends signals through the nervous system to the

muscles in the forearm. This process involves several key steps with the first being motor

cortex activation.

Motor cortex activation, (MCA), involves the decision to move the hand which originates

in the motor cortex of the brain. This area of the brain generates neural impulses that travel

down the spinal cord to the peripheral nerves that innervate the forearm muscles.

The next step in the process involves neural transmission. The neural impulses, or action

potentials, are electrical signals that travel along motor neurons. These motor neurons exit

the spinal cord and branch out through the peripheral nervous system to the specific muscles

involved in hand movements.

The neural impulses reach the neuromuscular junctions, which are the interfaces between

motor neurons and muscle fibers. The arrival of an action potential at the neuromuscular

junction triggers the release of neurotransmitters, specifically acetylcholine, into the synaptic

cleft (the gap between the neuron and the muscle fiber).

The acetylcholine binds to receptors on the muscle fiber’s surface, leading to a series of
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biochemical events that result in the muscle fiber’s depolarization. This depolarization, if

strong enough, triggers an action potential in the muscle fiber itself.

The muscle fiber’s action potential initiates the sliding filament mechanism, causing the

muscle to contract. This contraction pulls on tendons connected to the bones of the hand,

leading to movement (either opening or closing the hand, depending on which set of muscles

is activated).

The electrical activity generated during muscle contraction can be detected on the skin’s

surface as electromyographic (EMG) signals. The MyoWare sensor and similar devices de-

tect the electrical activity associated with muscle contractions through a process known as

electromyography (EMG).

EMG works in the context of detecting hand movements in a specific way. When a

muscle fiber contracts, it generates electrical signals that propagate along the muscle and

can be detected on the skin’s surface. These signals are the sum of the action potentials

from numerous muscle fibers within the muscle.

The MyoWare sensor, placed on the skin over the muscles of the forearm, detects these

electrical signals. The sensor essentially captures the voltage changes caused by the under-

lying muscle fiber action potentials. The strength and pattern of these signals can indicate

which muscle is contracting and how forcefully.

However, the forearm’s muscles are layered and interwoven, making it a complex area

for signal detection. Movements like opening and closing the hand involve multiple muscles,

each contributing to the overall EMG signal. Additionally, the signal can be affected by

factors such as sensor placement, skin conductivity, and external noise, complicating the

interpretation of the data.

Understanding these biological and physiological processes is fundamental to improving

prosthetic control systems. By integrating knowledge of muscle activity and neural con-

trol mechanisms with advanced signal processing and machine learning techniques, we plan

to create more responsive and intuitive prosthetic devices that better mimic natural hand
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movements.
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CHAPTER III

SIGNAL ACQUISITION AND PROCESSING

This section will detail the methodologies and technologies involved in capturing EMG

signals, specifically the importance of sensor placement, the types of electrodes used, and

the pre-processing steps necessary to obtain clean and usable signals. For my own purpose,

it will also focus on the problems we face in the sensor’s readability, and how to approach it

through solution-based techniques.

3.1 EMG Signal Acquisition Techniques

Electromyography (EMG) is a diagnostic procedure to assess the health of muscles and the

nerve cells that control them. It has also found extensive application in controlling prosthetic

devices, including bionic hands, by translating electrical signals from muscles into commands

to move the prosthetic. The acquisition of these signals is a critical first step in the process,

requiring precise techniques and technologies to ensure accuracy and reliability.

Surface EMG involves the use of electrodes placed on the skin overlying a muscle to detect

the electrical activity of the muscle. This non-invasive method is preferred for prosthetic

control due to its simplicity and ease of use. The sEMG sensors, such as the MyoWare

sensor, are designed to pick up the electrical signals generated by muscle fibers during their

contraction. These sensors are highly sensitive to changes in voltage that occur when muscle

fibers are activated. For prosthetic applications, the placement of these sensors is crucial.

They are typically positioned over the muscle groups that show the strongest signal during

intended movements, such as flexing or extending the hand.

As of now, there are problems arising in the readability of the sensors. What was sug-
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gested was to use silver to silver chloride electrodes, if possible. If not, I believe the use of

the gel should be sufficient enough on a regular electrode. Based on my research this is why:

Silver-silver chloride (Ag/AgCl) electrodes and conductive gels play a crucial role in

enhancing the readability and reliability of signals from muscle sensors, such as those used in

electromyography (EMG). The choice of Ag/AgCl electrodes is particularly beneficial due to

their low polarization characteristics, which enable the maintenance of a stable and consistent

voltage during measurements. This stability is key to capturing the small electrical signals

generated by muscle activity without significant distortion. Furthermore, silver’s excellent

electrical conductivity ensures efficient signal transmission from the skin to the measuring

device, minimizing signal loss and noise for clearer signal output. The biocompatibility of

these electrodes also means they can be worn for extended periods without causing skin

irritation or allergic reactions, essential for user comfort.

In addition to the electrodes themselves, the use of conductive gel may further improve

signal quality by lowering the impedance at the skin-electrode interface. This reduction in

impedance allows for a better capture of the muscle’s electrical activity, leading to more

accurate readings. Conductive gels ensure consistent contact between the electrode and

the skin, even during movement, which helps reduce motion artifacts and maintain signal

stability. They also hydrate the skin, further reducing contact resistance and improving

signal quality over long periods. By filling gaps between the electrode and the skin, the

gel ensures comprehensive signal capture across various muscle topographies, enhancing the

overall effectiveness of muscle activity monitoring.

The effectiveness of EMG signal acquisition heavily relies on the technology of the sensors

used and their placement on the body. Proper sensor placement is determined through

anatomical study and empirical testing to find the locations that provide the most robust

signals for the intended movements.

One of my approaches to get a better reading would be to calibrate the process, and

maintain consistency through every attempt at signal detection. More specifically, to enhance
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signal quality and reduce noise, a combination of proper electrode placement, use of high-

quality electrodes (such as silver-silver chloride), and meticulous calibration procedures is

essential.

Calibration plays a pivotal role in differentiating between the noise and the actual muscle

signal. To do this, we would need a baseline activity level by having the person who’s wearing

the electrodes to relax their forearm muscles completely. This baseline can help in setting a

threshold for detecting muscle activation, minimizing the likelihood of interpreting electrical

noise as a muscle movement. Following this, we would need to perform a series of controlled

muscle contractions at varying intensities. By recording the sensor output during these

known activities, the sensitive and filtering parameters can be adjusted to optimize signal

detection and reduce noise.

Another technique we can use is the inclusion of offsetting any data. Once we have the

baseline drift, we can be sure that the data itself actually reflects muscle activity rather

than any outside interferences. We can do this by incorporating signal filtering techniques,

possibly through software, to further improve data quality.

3.1.1 Noise Reduction and Signal Enhancement

Once we receive a signal, the raw EMG signals can undergo conditioning to improve their

clarity and usefulness for control algorithms. This process typically involves amplification,

to make the signals strong enough for processing, and filtering, to remove noise and artifacts

that are not part of the muscle’s electrical activity. Band-pass filters are commonly used

to exclude signals outside the frequency range typical of human muscle activity, which is

generally between 20 Hz and 500 Hz. However, if the sensors we use do not already come

with band-pass filters, than we can attempt to use notch filtering software to remove specific

frequencies, such as the 50 or 60 Hz electrical noise commonly introduced by power lines.

Additionally, implementing a robust algorithm that dynamically adjusts to the user’s muscle

activity levels can help in distinguishing between intended movements and random noise,
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enhancing the prosthetic’s responsiveness and accuracy.

When it comes to real-time signal processing, especially for applications like prosthetic

control using EMG data, the goal is to achieve the highest possible accuracy in the inter-

pretation of muscle signals. However, our EMG signals are noisy, subject to interference

from various sources including electrical noise, motion artifacts, and physiological factors

like sweating. To address these challenges, especially in a resource-constrained environment

like a Raspberry Pi, efficient algorithms and techniques can be employed to enhance signal

quality before feeding it into machine learning models for prosthetic control.

3.2 Real-time Signal Processing Algorithms

The first step in processing EMG signals in real time is to apply filters that can reduce

noise without significantly delaying the signal. High-pass, low-pass, and band-pass filters

are standard tools used to eliminate frequencies that don’t contain useful information. For

instance, a high-pass filter can remove motion artifacts, which are typically low-frequency,

while a band-pass filter can be configured to only allow frequencies within the expected range

of EMG signals (usually between 20 Hz to 500 Hz).

In Python, the scipy.signal library can be used to implement these filters efficiently. For

example, a Butterworth band-pass filter can be designed and applied to the data to retain

only the frequency components of interest.

An additional technique could involve adaptive filters. Adaptive filters adjust their pa-

rameters in real time to dynamically respond to changes in the signal’s noise characteristics.

This is particularly useful for EMG signals, where the noise can vary widely depending on the

user’s movement and environment. The Least Mean Squares (LMS) algorithm is a common

choice for adaptive filtering, due to its simplicity and effectiveness in many scenarios.

Wavelet transform provides a way to analyze the signal at various frequencies with dif-

ferent resolutions. It is particularly effective for non-stationary signals like EMG. Wavelet

denoising involves decomposing the signal into wavelet coefficients, thresholding these co-
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efficients to remove noise, and then reconstructing the signal. This method can effectively

remove transient noise while preserving the sharp features of the EMG signal.

Details on Noise Reduction and Signal Enhancement Techniques

3.2.1 Machine Learning for Signal Quality Improvement

Machine learning models can be trained to detect anomalies in the EMG data, identifying

segments that are too noisy to be useful. Once identified, these segments can either be dis-

carded or subjected to further processing to try and salvage useful information. Techniques

such as autoencoders, trained on clean EMG signals, can recognize when an input signal

deviates significantly from the norm.

Before feeding EMG signals into a machine-learning model for prosthetic control, it’s

crucial to extract features that effectively represent the signal’s characteristics. Features in

both time and frequency domains, such as mean absolute value, waveform length, zero cross-

ings, and power spectral density, can be calculated in real time. Machine learning algorithms

can then be used to select the features that are most relevant for predicting the intended

movement, reducing the dimensionality of the data and improving model performance.

For the actual control of the prosthetic, machine learning models can be trained to map

the processed EMG signals to specific movements. For our specific task, it may be bene-

ficial to explore Support Vector Machines (SVM), Random Forests, and Neural Networks.

Specifically, these models can be made more robust against noisy data by training them on

a diverse dataset that includes examples of noisy signals, effectively teaching the model to

recognize the underlying patterns even in suboptimal conditions.

The Raspberry Pi, with its GPIO capabilities and support for Python, is a suitable

platform for deploying real-time EMG signal processing and machine learning algorithms.

However, we recognized that due to its limited computational power compared to a desktop

computer, it’s important to optimize the algorithms for efficiency. Perhaps this might involve

simplifying models, reducing feature dimensionality, and implementing real-time data pro-

10



cessing pipelines that minimize latency. Libraries such as NumPy and SciPy can be used for

signal processing, while scikit-learn and TensorFlow Lite offer machine learning capabilities

that are optimized for performance on low-power devices. TensorFlow Lite, in particular,

is designed to run lightweight deep learning models on edge devices like the Raspberry Pi,

providing a balance between computational efficiency and predictive performance.

We also recognize that, for the moment, going the machine learning route would be an

extra step, and it would be more efficient to try and retrieve ’good’ data from the source

itself, rather than try to work with bad data.

11



CHAPTER IV

MACHINE LEARNING FOR PROSTHETIC CONTROL

Work in progress (Coming soon as we advance more!)

4.1 More sections

4.2 More sections

4.2.1 Another subsection
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